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Optimization Techniques

Models of experimental design
They are for producing “a good and 

effective product” in a reproducible 
manner. 

Prof. J.Vijaya Ratna

Pharmaceutical production 

Product must be safe and effective
Production process must  be reproducible 

when its quality is determined by specific 
criteria. 

Prof. J.Vijaya Ratna

3

4



Prof. J. Vijaya Ratna 09-06-2020

www.MyboGroup.com 3

Optimization

Optimization has to do with this “production 
process”. 

Today the regulatory environment is very
strict and when the Drug Control Department
inspectors come for inspection when a new
drug is being introduced, they ask for a
“development report” for both formulation
and process.

Prof. J.Vijaya Ratna

Optimization techniques

Optimization techniques offer a rational 
approach for the selection of the several 
excipients and also for selecting different 
manufacturing steps for a given product. 
Optimization is not just a screening

technique.

Prof. J.Vijaya Ratna
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Optimization Techniques

Utilizing an experimental design helps us
develop the best product under given
conditions and also to submit proof that it is
the best.

Prof. J.Vijaya Ratna

Advantages

Designs for optimization give advantage over
traditional experimentation because:
In traditional experimentation we study one

factor at a time (OFAT) and thus miss some
interactions.
We take the components into a system, by trial

and error basis and sometimes miss the exact
best composition, by not being able to go
deep enough.

Prof. J.Vijaya Ratna
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Definition

The word “Optimize” is defined by
Webster’s New Collegiate Dictionary 1974,
as follows: “to make as perfect, effective
or functional as possible”.

Prof. J.Vijaya Ratna

Questions

Perfect by whose definition?

Perfect by what criteria?

Perfect under what conditions?

Prof. J.Vijaya Ratna
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Answers

Researcher’s definition

Researcher’s criteria

Researcher’s experimental conditions

Prof. J.Vijaya Ratna

Traditional

We use the word optimization in the context of 
process development and formulation. 

Traditionally, we carry out formulation by a  trial and 
error manner and declare a product as optimized-
the one which comes out as perfect in our 
evaluation, as per our criteria.

 In testing for process variables, we test one factor at 
a time (OFAT).

Prof. J.Vijaya Ratna
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Concept

But under these conditions the best one is
simply the last one prepared.

After we finish experimentation, someone else
may come up with changed conditions of
experimentation and a more “perfect”
product.

Prof. J.Vijaya Ratna

Concept

No matter how rationally designed, the trial and 
error method can be improved upon.

But in optimization procedures, we use a model 
to prove that under  the given conditions, and 
judging by the given criteria, “one particular 
product” is the perfect one. 

Prof. J.Vijaya Ratna
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Optimization
We are preparing a map of the responses (as

judged by the criteria) obtained when the
variables are changed in a defined way and
from the map, we can choose the response
we want and thus proceed to fixing the
conditions needed for that response.

Prof. J.Vijaya Ratna

In traditional experimentation, dependent
variable, y is taken as a simple function of X1
and X2.

In optimization the designs take into
consideration,
the interactions between the components and

give us a multiple regression equation and

a map with a surface.
Prof. J.Vijaya Ratna
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The optimization designs, when fed with the
ranges of the independent variables and the
required ranges of the dependent variables,
give us the compositions of the independent
variables with which we have to work and
report the dependent variables.
They give us the compositions for the trials.
The number of trials are usually less than the

number which we do, if we are working on trial
and error basis.

Prof. J.Vijaya Ratna

Co-acervation phase separation

We can prepare microcapsules by co-
acervation phase separation method.

Example:
We determine the point at which co-acervation

is taking place and we take the gelatin, sodium
sulphate and water in the quantities indicated
by the point of coacervation.

To determine that point, we do the following
experiment.

Prof. J.Vijaya Ratna
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Experimental
We take 10 test tubes.

We take 2 ml of 5% gelatin solution into each tube.

We take 10% sodium sulphate solution into a
graduated pipette; add 0.5 ml of it to the first test
tube of gelatin, add 1 ml of it to the second gelatin
tube, add 1.5 ml to the third, …… and 5 ml to the
last tube.

We shake them thoroughly and put them back in
the rack of test tubes in clear ascending order.

Prof. J.Vijaya Ratna

Prof. J.Vijaya Ratna

19

20



Prof. J. Vijaya Ratna 09-06-2020

www.MyboGroup.com 11

 In the first tubes, there would be no co-acervation,
and in the last tubes, there would be precipitation

 If we look at the tubes in the ascending order, at some
point a cloud would be starting and gradually it would
be more and more.

Let us assume, in our case, cloud is clearly observed in
3 ml sodium sulphate added tube, but there is nothing
in 2.5 ml sodium sulphate added tube.

We record the observation, and remove the tubes.

Prof. J.Vijaya Ratna

Pin-pointing
 Take 8 clean test tubes, put in each tube, 2 ml of 5 % w/w

gelatin solution.
Add to the first tube, 2.4 ml of 10% w/w sodium solution, 2.5

ml to the next, 2.6 ml to the next and so on – 3.1 ml to the 8th

tube.
 Shake them thoroughly and keep them in the rack. Observe

closely where co-acervation started.
 Let us say, there is nothing with 2.7 ml and there is a slight

suspicion of a cloud at 2.8 ml.
We record that 2.8 ml of 10% w/w solution of sodium

sulphate is giving co-acervation with 2 ml of 5 % w/w
solution of gelatin.Prof. J.Vijaya Ratna
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Prof. J.Vijaya Ratna

Preparation of microcapsules

Now, we take the quantities indicated by the
solution in the test tube containing 2 ml gelatin
and 2.8 ml sodium sulphate solution and with
that composition go for the preparation of
microcapsules.

The assumption is that such a composition
would give fine microcapsules of the drug
taken with a thin coat.

Prof. J.Vijaya Ratna
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Now, I was operating with a graduated pipette
having up to 0.1 ml gradation.

Suppose someone is working with a graduated
pipette that has graduations up to 0.05 ml, then
they can pin point the point of co-acervation
much better and their microcapsules would be
more accurate or nearer to the expected ideal.

So, in this method, the last product prepared is the
best product. Someone can come up with an idea
and make a more perfect product anytime.

Prof. J.Vijaya Ratna

Gelatin- sodium sulphate-water system

Objective is to draw the binodal curve (it is the
boundary of the two phase system) in a triangular
graph

Prof. J.Vijaya Ratna
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27

28



Prof. J. Vijaya Ratna 09-06-2020

www.MyboGroup.com 15
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Optimization
If we could put our values into a system or a design

(where we take:

which could get a map, a three dimensional map
which gives a response surface, and take the values
of gelatin, sodium sulphate and water for
microcapsules of a given size and encapsulation
efficiency from it – and prepare microcapsules - that
would be optimization as it is being done now.

independent variables as: gelatin, water and sodium sulphate
dependent variables as: size of microcapsule and encapsulation 

efficiency

Prof. J.Vijaya Ratna
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Plots showing the effect of surfactant and cholesterol on drug content of 
tamsulosin hydrochloride loaded niosomes

Contour plot

Response surface plot

Prof. J.Vijaya Ratna

Optimization
Now, this optimization by following a design- is giving us the

most perfect product for the given weights of materials and
for the given criteria defined. No one can improve it further
and say- this is more perfect.

 In a three dimensional area map,
whatever depth you want, with respect to dependent variables,

you can go, and

you would get the values of the independent variables for it

interpolation is at its best

every point on the map defines the product coming out with the
quantities of independent variables suggested by that point in a
most perfect manner.

Prof. J.Vijaya Ratna
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So, what are the designs doing?
When we give the ranges of our independent

variables and dependent variables (by our
experience), the design by certain complex
calculations, coming out with the experiments
that we have to do.

When we do those experiments, each with three
replications, and fill the data in the design area,
they are coming out with response surface plots
that give the elements of the products with
different levels of the criteria.

Prof. J.Vijaya Ratna

We prepare our optimised product from this
response surface plot

Evaluate it

Find out whether it is really as perfect as
predicted by the plot or not.

We find the error between the suggested one
and the practical one and this should be zero.

Prof. J.Vijaya Ratna
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Differences

No. TRADITIONAL OPTIMIZATION

1 One factor at a time All factors in every trial, factors 
studied simultaneously

2 Cannot study interactions Studies interactions, separates main 
effects and interaction effects

3 Trial and error method Trials are given by the design based 
on computations, based on a 
rationale

4 Graphs and plots (two 
dimensional)

Contour plots, response surfaces, 
overlay plots (two dimensional and 
three dimensional plots)

Prof. J.Vijaya Ratna

Differences
No. TRADITIONAL OPTIMIZATION

5 Result and analysis constrained 
by the accuracy to which our 
equipment can reach 
(interpolation limited)

Analyses our results and gives 
maps which help us go to any 
point we want (interpolation at its 
best)

6 Proof of “optimized” limited to 
our trials

Can prove that “optimized” is the 
best under the given conditions

7 Dependent variable y is taken 
as a simple function of 
independent variables X1 and 
X2

Multiple regression equations are 
used

8 Number of trials are usually 
more

Number of trials are usually limited 
and lesserProf. J.Vijaya Ratna
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Differences

No. TRADITIONAL OPTIMIZATION

9 Time, expense and effort are more Time, expense and effort are 
lesser

10 Generated data is not completely 
used in analysis

Maximum use of generated 
data is done

11 Modern Regulators do not prefer 
this mode of development from 
manufacturers

Modern Regulators prefer this 
mode of development 
because it is rational and can 
prove its validity.

Prof. J.Vijaya Ratna

Constrained/ Unconstrained

 There are two varieties of problems that we
encounter in optimization,
Constrained and

Unconstrained.

Prof. J.Vijaya Ratna
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Constrained
In this case restrictions are placed on our

experimentation and we cannot alter the
variables or conditions as we like.

 For example, if we are homogenizing an
emulsion using a colloid will, if we increase the
time of homogenization we get a very small
globule size which is very good for the product.

Prof. J.Vijaya Ratna

But increasing the homogenization time also
increases the temperature of the product.

So that is a restriction on the procedure.

To give another example, we may be selecting
excipients and process steps with a view to
make a very hard tablet.

Prof. J.Vijaya Ratna
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If we say “make the hardest possible tablet, but
it should disintegrate within 15 minutes”; we
have a constrained optimization procedure
before us.

Prof. J.Vijaya Ratna

Unconstrained
If there are no restrictions on our product or

process, we are doing unconstrained
optimization.

In pharmaceutical research we are usually
dealing with constrained optimization as we
have restrictions imposed by time, economy,
product safety, efficacy, regulatory
considerations and market considerations.

Prof. J.Vijaya Ratna
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 The development of a pharmaceutical
formulation and the fine tuning of the process
for that formulation involve
(1) changing the variables (factors) at different

levels and

(2) measuring the dependent variables or
responses (effects).

Prof. J.Vijaya Ratna

Variables

The independent variables are the formulation 
and process variables which the experimenter 
can change as per his judgement.

Examples are 
(1) the quantities of excipients in a formulation

(2) the time taken for homogenization 

(3) the force exerted in punching a tablet; and 
so on.

Prof. J.Vijaya Ratna
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The dependent variables are the responses or 
results or effects.

 Examples are 
(1) the hardness or disintegration time of a tablet

(2) the viscosity or globule size of an emulsion 

(3) the sedimentation rate of a suspension

Prof. J.Vijaya Ratna

Classical Optimization 

Classical Optimization techniques result from
application of calculus to the basic problem
of finding the maximum or minimum of a
function.

Prof. J.Vijaya Ratna
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Statistical Designs 

There are two varieties of statistical optimization
designs.

1. Experimentation continues as optimization
study is done.
Evolutionary Operations Procedure or EVOP

and

Simplex methods.

Prof. J.Vijaya Ratna

2. Experimentation is completed before the
optimization takes place.
Classic mathematical and

Search methods.

Prof. J.Vijaya Ratna
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Designs of Experiments

Statistical Designs

EVOP

Simplex Lattice                                                                                                              

Factorial Design

Response Surface Methodology

Prof. J.Vijaya Ratna

Optimization techniques help us to

 (1) select experimental points so that the entire 
area of interest is covered or considered and

 (2) separate the effects of the variables, i.e. we 
can tell which variable caused a particular result.

Prof. J.Vijaya Ratna
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Steps in the procedure

Suppose we are preparing some matrix tablets,
we have to select the
weight of the polymer (X1) and

weight of the diluent (X2)

in order to get tablets of

particular hardness (Y1) and

time for 100 % dissolution (Y2).
Prof. J.Vijaya Ratna

1. We do some preliminary experimentation and
determine the range of the two excipients to
get the dependent variables as we want them.

2. We select our DoE, may be Central Composite
Design, and enter our values into the template
of the design (in software).

3. The design will ask us to do certain
experimental trials.

Prof. J.Vijaya Ratna
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4. We will carry out those trials, prepare the tablets
as per those compositions and give the results
from the evaluation into the design (entered into
software).

5. The design will give us plots which are analysis of
our data. From these plots, we take those
compositions which have desirability values of 1.

6. These are candidates for optimization.

Prof. J.Vijaya Ratna

We prepare these products, evaluate them and
check whether their “Y” values are exactly
agreeing with the “Y” values predicted by the
design.

If error is near zero, we have an optimized
product.

Prof. J.Vijaya Ratna

53

54



Prof. J. Vijaya Ratna 09-06-2020

www.MyboGroup.com 28

Factorial Design
Factorial Design is the most widely used method of

optimization.
We set up the design,
we carry out the experiments,
generate the data and
we write multiple regression equations that express

the relationships between the variables.

These equations are the basis of optimization and
they define the response surface for the system
under investigation.

Prof. J.Vijaya Ratna

When the effects of different factors, each at
different levels, on the results of the experiments
are to be elucidated, FACTORIAL EXPERIMENTS are
carried out.

Prof. J.Vijaya Ratna
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Pharmaceutical examples

Experiments to determine the effect of

pressure and lubricant on hardness of tablets, 

disintegrant and lubricant concentration on 
tablet dissolution

Prof. J.Vijaya Ratna

Factorial Designs

Designs of choice for simultaneous
determination of the main effects and
interaction effects of several factors.

Prof. J.Vijaya Ratna
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Definitions

Factor:
A factor is an assigned variable such as

concentration, temperature, lubricating agent ,
drug treatment or diet. A factor can be
quantitative or qualitative.

Prof. J.Vijaya Ratna

A quantitative factor has a numerical value
assigned to it.

Ex: Concentration: 1%,2%,3%

A qualitative factor has a name assigned to it
rather than a value.

Ex: Treatments, diets, batches of materials,
laboratories, analysts or tablet diluents

Factors

Prof. J.Vijaya Ratna
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Single factor designs fit the category of one 
way ANOVA design.

Prof. J.Vijaya Ratna

Levels

The levels of a factor are the values or
designations assigned to the factor.
For the factor “temperature”, levels may be 30o

or 40o.

For the factor “concentration”, levels may be 0.1
molar or 0.2 molar.

For the factor “drug treatment” levels may be
drug and placebo.

Prof. J.Vijaya Ratna
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Runs or Trials
The runs or trials that comprise factorial experiments

consist of all combinations of all levels of all factors.
Ex: Investigation of the effects of polymer

concentration and lubricant concentration on
dissolution time of a tablet

If both factors were at two levels (two concentrations
for each factor), four runs (dissolution determinations
for four formulations) would be required

Prof. J.Vijaya Ratna

Effects
The effect of a factor is the change in response

caused by varying the levels of the factor.
The main effect is the effect of a factor

averaged over all levels of the other factors.
In the example the main effect due to drug

would be the difference between the average
response when drug is at the high level (runs b
and ab) and the average response when drug is
at the low level (runs (1) and a ).

Prof. J.Vijaya Ratna
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Interaction

Interaction may be defined as a “lack of
additivity of factor effects”.

Ex: In a two factor experiment if factor A has
an effect equal to 5 and if factor B has an
effect of 10, additivity would be evident if an
effect of 15 were observed when both A and B
are at their high levels.

Prof. J.Vijaya Ratna

Interaction

If the effect is greater than 15 when both factors
are at their high levels, the result is synergistic
with respect to the two factors.
If the effect is less than 15 when both factors are

at their high levels, an antagonistic effect is said
to exist.
The drug effect measured when the lubricant is

at the low level (a-(1)) is DIFFERENT from the drug
effect measured when the lubricant is at the
high level (ab-b).

Prof. J.Vijaya Ratna
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Factorial designs are the designs of choice
for simultaneous determination of the effects
of several factors and their interactions.

Prof. J.Vijaya Ratna

When a particular experiment involves more than one
independent variable, the traditional method is to
keep one variable (A) constant and change the other
(B).

After establishing the effect of B, in the next cycle B is
kept constant and A is changed.

The effects of changing of A and B on the dependent
variable Y are then separately reported.

The problem in this type of experimentation is, we
cannot detect interaction effect

Prof. J.Vijaya Ratna
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Example:

Imagine an old balance with a zero error of 1kg.

A fat man comes and stands on it and the
balance says 122 kg. We announce his weight
as 121 kg.

A child comes and stands on the balance and
it shows 23 kg. We announce that the child’s
weight is 22 kg.

Prof. J.Vijaya Ratna

In this experiment we could have missed some
interaction effect.

The balance’s zero error may be changing with
weight.

Prof. J.Vijaya Ratna
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So what should be done is this.
 Take the weight readings
Empty balance: (1)
Balance + child: (a)
Balance + fat man: (b)
Balance + child + fat man: (ab)

The weight of the child  = ((ab)-(b) + ((a)-(1)
2

The weight of the fat man = (b-1) + (ab-a)
2

Prof. J.Vijaya Ratna

Interaction effect 

If (ab-b) = (a-1)

then there is no interaction. 

The difference between these two is the 
interaction effect. 

Prof. J.Vijaya Ratna
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Advantages 

In the absence of interaction, factorial
designs have maximum efficiency in
estimating main effects.

If interactions exist, factorial designs are
necessary to reveal and identify the
interactions.

Since factors’ effects are measured over
varying levels of other factors, conclusions
apply to a wide range of conditions.

Prof. J.Vijaya Ratna

 Maximum use is made of the data since all
main effects and interactions are calculated
from all of the data.

 Factorial designs are orthogonal, all
estimated effects and interactions are
independent of effects of other factors.

Prof. J.Vijaya Ratna
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Applications

The results of a factorial experiment may be
used to help interpret the mechanism of an
experimental system.

To determine whether the main effects and the
interaction effects are significant or not.

To recommend implementing in a practical
procedure or in a pharmaceutical industry.

Prof. J.Vijaya Ratna

The name of a factorial design depends on two points:
The number of independent variables

The number of levels of each independent variable

Prof. J.Vijaya Ratna
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The effect of a single variable is known as a main effect

The effect of two variables considered together is 
known as an interaction

For the two-way between groups design, an F-ratio is 
calculated for each of the following:
The main effect of the first variable

The main effect of the second variable

The interaction between the first and second variables

Prof. J.Vijaya Ratna

Optimization Procedure 
In this procedure we construct an equation that

describes the experimental results as a function of
the factor levels.

A polynomial equation can be constructed, in the
case of a factorial design, where the coefficients in
the equation are related to the effects and
interactions of the factors.

If we describe a factorial design as 2n,
“n" stands for the number of factors 
“2” stands for the number of levels.

Prof. J.Vijaya Ratna
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The polynomial equation for a 2n design will be of 
the form.

Y=B0+B1X1+B2X2+B3X3+B12X1X2+B13X1X3+B23X2X3+B123X1X2X3+

Where Y is the measured response Xi is the level
of the ith factor, Bi, Bij etc. represent coefficients
computed from the responses of the
formulations in the design.

Prof. J.Vijaya Ratna

For a 23 experiment, i.e., an experiment in which
3 factors or independent variables are being

tested,

each at 2 levels, the following are the steps for the
development of a polynomial equation and using
it in optimization.

Prof. J.Vijaya Ratna
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Factorial Design

Example of 23 i.e., three factors with two levels;
preparation of ion exchange resinates with
maintenance of three factors pH, drug concentration
and time period

Level-1 Level-2

Factor 1: pH : 4 8

Factor 2: Drug Conc : 100 mg 200 mg

Factor 3: Time period : 20 min 40 min

Prof. J.Vijaya Ratna

We define the three factors (X1, X2 and X3) and 
their two levels, say,

Low level High level
 X1 (starch) :      0 2
 X2 (colloidal silica) : 0 1
 X3 (drug) : 0 5

So, total number of experiments = 23 = 8

Step-1:

Prof. J.Vijaya Ratna
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We carry out the experiments, i.e. we prepare 8
formulations.
Formulation No. X1 X2 X3

1 0 0 0
2 2 0 0
3 0 1 0
4 2 1 0
5 0 0 5
6 2 0 5
7 0 1 5
8 2 1 5

Step-2:
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We determine the result Y, it may be the
hardness or disintegration time of the tablet.

So we have 8 different Y values for 8 different 
formulations.

Step-3:

Prof. J.Vijaya Ratna
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We write 8 different simultaneous equations. 

For example

(1) 0X1+0X2+0X3=Y1 (some Y value determined)

(4) 2X1+1X2+0X3=Y4 (some determined Y value)

Step-4:

Prof. J.Vijaya Ratna

We solve these 8 equations (with the help of a 
computer) to get the coefficients

 B0, B1, B2, B3, B12, B23, B123 etc.

Step-5:

Prof. J.Vijaya Ratna
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Then we write the polynomial equation of the form
Y = B0+B1X1+B2X2+B3X3+…… +B12X1X2+B13X1X3+……  

+B123X1X2X3

Using this equation we can calculate the response
Y for unknown X1, X2, X3 values.

Using this equation we can also develop a
response surface.

Step-6:

Step-7:

Step-8:
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Utilizing the equation and the graph
we can predict the response for a different set of

Xis and
we can select that set of Xis which can give us

the “optimum”
 or “as perfect as possible under the given

conditions” response Y.
This is optimization using factorial design.

Step-9:

Prof. J.Vijaya Ratna
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Example of a 22 factorial 

We want to prepare a tablet which has a high
dissolution rate.

So dissolution rate is response Y.

We know that two factors are having effect on
this response Y, they are
(X1) drug concentration and

(X2) lubricant concentration.

Prof. J.Vijaya Ratna

We decide to test each factor at two levels. 
The design of the experiment is like this

Drug lubricant Symbol Formulation

X1 X2
Low Low (1) Low drug and low lubricant

concentration
Low High (a) Low drug and high lubricant

concentration
High Low (b) High drug and low lubricant

concentration
High High (ab) High drug and high

lubricant concentration
Prof. J.Vijaya Ratna
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We prepare the four formulations. 

We determine the dissolution rates for them. 

Then we find the effects like this:

Main effect of drug = [b+ab-(1)-a]

2

Main effect of lubricant = [ab+a-(b)-(1)]

2

 Interaction effect will be the difference between 
(ab-b) and (a-1)

and the difference between (ab-a) and (b-1)
Prof. J.Vijaya Ratna

If there is no interaction the graphs will look like 
this

Graphs Parallel

Prof. J.Vijaya Ratna
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If there is interaction the graphs will look like this

Graphs Not Parallel

Prof. J.Vijaya Ratna

Interaction

So by this step we can tell what is the main
effect of each of these two factors and
whether interaction exists between these two
factors and if exists to what extent.

Prof. J.Vijaya Ratna
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The next step is to write a regression equation like this :

 Y = B0+B1X1+B2X2+B12X1X2

We have four equations involving X1 and X2
and the corresponding Y  S.

 By solving these four equations

 we find out coefficients B0, B1, B2 and B12.
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Then for different values of X1 and X2 we can 
calculate Y. 

In a reverse manner for a Y value that we want 
we can select X1 and X2 values.

This is optimization.

Prof. J.Vijaya Ratna
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ANALYSIS OF VARIANCE (ANOVA)

Analysis of variance is a statistical procedure designed
to analyze the difference between the means of more
than two samples.

Rationale: Total variance of all the data in an
experiment can be separated and attributed to two
sources, variance between groups and variance within
groups.

Variance within groups is also called error variance.
 If the experimental treatment has been effective, the

between groups differences will be expected to be
greater than can be accounted for by chance.

Prof. J.Vijaya Ratna

ANOVA TABLE
Source SS df MS F.value P.value Remark 

Model 400.38 5 80.08 53.07 <0.0001 Significant 

A 17.17 1 17.17 11.38 <0.0119 Significant 

B 78.69 1 78.69 52.15 0.0002 Significant 

AB 21.30 1 21.30 14.12 0.0071 Significant 

A2 39.14 1 39.14 25.94 0.0014 Significant 

B2 265.87 1 265.87 176.21 <0.0001 Significant 

Residual 10.56 7 1.51    

Lack of 

fit 
    0.1121 

Not 

significant 

Total 410.94 12     
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Terms
Source of variation: effects coming from

factors-main as well as interaction
Sum of Squares: term indicating the extent of

variance. Concept- Sum of squares of
deviation from mean
Degrees of freedom: has to do with the

number of repetitions of each factor
Mean sum of squares: Sum of squares divided

by corresponding degrees of freedom
Prof. J.Vijaya Ratna
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F value

F is defined as greater variance/ lesser variance

In ANOVA it is:

Ex: MS of A /Residual MS = 17.17 / 1.51 = 11.38

If F value is greater than the Table value, we 
declare that the treatment is significant.

Prof. J.Vijaya Ratna

Probability
Probability: If it is less than 0.05, we declare the

treatment to be significant.

P of Factor A is 0.0119. Implies the probability of
this much effect coming due to chance is
extremely low, i.e., 0.0119.

Significant: This term stands to tell that the effect
of the factor concerned is considerable/
important. Important word in statistics. Results
that have significance have high value.

Prof. J.Vijaya Ratna
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Table Experimental range and levels of 
independent variables in Box-Behnken design

Run No.
Variable level in coded form

X1 X2 X3

1 +1 -1 0
2 +1 0 -1
3 +1 0 +1
4 0 0 0
5 0 -1 -1
6 -1 0 -1
7 +1 +1 0
8 0 0 0
9 0 +1 +1
10 0 0 0
11 0 0 0
12 0 +1 -1
13 -1 0 +1
14 -1 +1 -1
15 -1 -1 -1
16 0 0 -1
17 0 -1 +1Prof. J.Vijaya Ratna

Factors
Levels used, Actual (coded)

Low
(-1)

Medium 
(0)

High
(+1)

X1 = Span 60 (mg) 360 200 40

X2 = Cholesterol (mg) 360 200 40

X3  =  Lecithin (mg) 40 20 0

Prof. J.Vijaya Ratna
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RATIONALE

Prof. J.Vijaya Ratna

PARTITIONING

Variance is partitioned between two sources, 
variance between groups and 

variance within groups.
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Example

Tablets are being punched out by three
different machines.

All granulation formulae are same.

We expect that tablets coming from the same
machine are having less variability and tablets
coming from different machines are having
more variability in between them.

Prof. J.Vijaya Ratna

Tablet machines
We calculate Sum of squares as a measure of

variability.

A ratio of the mean sum of squares of between
groups and the mean sum of squares within
groups must be lesser than that given by the
tables (that comes due to chance reasons only
at the given degrees of freedom.

If the ratio is less than the table F value then we
declare that the difference is not significant

Prof. J.Vijaya Ratna
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Chance Variance

Chance Variance

A variance which occurs due to chance
reasons, which is very small in scale and which
occurs on both positive and negative sides.

Also called as error variance.
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Real Variance

Real variance is due to a real reason and often
is the effect of a treatment.

When a treatment is effective there is a clear,
significant difference in the result.

So ANOVA consists of separating the variance
into two categories, that which is due to a real
reason and that which is due to a chance
reason.

Prof. J.Vijaya Ratna
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PURPOSE OF ANOVA

To establish whether variation between groups is likely 
to be a function of chance or not.

Example: Comparison of three batches of tablets  with  
their  dissolution times 

Tablets Dissolution times

Batch I 77 81 71 76 80

Batch II 72 58 74 66 70

Batch III 76 85 82 80 77
Prof. J.Vijaya Ratna

Computational formulas for sums of squares

SST  Total sum of Squares
X  Each Individual score

T  Grand mean of all the N cases
N  Total Number of observations

= n1 + n2 + n3

x2  Sum of the squares of each raw score
(x)2  Square of the sum of the raw scores

X

N

X
XXXSS TT

2
22 )(

)(



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Computational formulas for sums of squares

Sum of squares between groups

SSb Sum of squares between the groups 

X1 Sum of the first group

N1 Number in the first group

X Sum of all the scores

N Total number of scores. 

N

X

n

X

n

X

n

X
SS

k

k
b

22

2

2
2

1

2
1 )()()()( 











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 Within groups sum of squares

SSW = Sum of squares within the groups

X1
2 = Sum of the squares of the scores in the first group.

n1= the number in the first group

SSW = SST - SSb

k

k
Kw n

X
X

n

X
X

n

X
XSS

2
2

2

2
22

2
1

2
12

1

)()()( 








Computational formulas for sums of squares
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SCHEMATIC OF ONE – WAY  ANOVA

Source of 
Variation

Degrees of 
freedom

Sum of 
Squares

Mean Square F

Treatments 
(Between)

K-1 SSTr or SSb MSb = SSb/K-1 MSb/MSW= F

Error 
(Within)

K (n-1) or         
N-K

SSE or SSW
MSW = SSW /          

N-K

Total Kn-1 or  N-1 SST

Prof. J.Vijaya Ratna

ANOVA Table for ex. problem

Source of 
Variation

Degrees of 
Freedom

Sum of 
Squares

Mean Square 
F

Treatments 
(Between 
Groups)

2 390 195 8.48

Error 
(Within 
groups)

12 276 23

Total 14 666

Prof. J.Vijaya Ratna
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Problem

Tablet 
Batches

Dissolution times (Coded by Subtracting 70)

Batch I 7 11 1 6 10

Batch II 2 -12 4 -4 0

Batch III 6 15 12 10 7

Prof. J.Vijaya Ratna

Test Procedure

 1. Null hypothesis: 1 = 2 = 3

Alternative hypothesis : ’s are not all equal.

 2. Level of significances: ʆ = 0.05

 3. Criterion: Reject the null hypothesis if F>3.89, the value of
F0.05 for K-1=3-1=2 and N-K=15-3=12 degrees of freedom
where F is to be determined by an analysis of variance,
otherwise accept it.
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Calculations

 4.Calculations:

 5.ANOVA table:

 6.Decision: If F value obtained
exceeds 3.89 reject H0, otherwise accept H0

 

     

bTW

ii

i
iT

SSSSSS
n

X

n

X

n

X
SSb

N

X
XSS















22
2

2

2
2

21
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TWO WAY ANOVA

When we are trying to find out whether the effects
of treatments in two directions, are significant or
not.

Sums of squares in two directions, column wise and
row wise are calculated.

The total variance in the data is subdivided into
three categories, one- due to treatments (columns),
two- due to blocks (rows), and three – due to
chance.
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Two way ANOVA

Prof. J.Vijaya Ratna

Two way ANOVA

In two way ANOVA, two F ratios are
calculated.

First one is the ratio of treatments (columns)
sum of squares to error or chance sum of
squares.

Second one is a ratio of blocks (rows) sum of
squares to chance sum of squares.
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Two way ANOVA

Two decisions are taken,

 one w.r.t. significance of difference
between treatments (columns)

 the second w.r.t. significance of difference
between blocks (rows).

Prof. J.Vijaya Ratna

TWO WAY ANALYSIS OF VARIANCE 

 SST = SS (Tr) + SSB + SSE

 SSE = SST – [SS (Tr) + SSB]

 SSB  Sum of squares between Blocks

 SS (Tr)  Sum of squares between Treatments

 SSE  Error sum of Squares

Prof. J.Vijaya Ratna
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SCHEMATIC OF TWO WAY ANOVA

Source of 
variation

Degrees of 
freedom

Sum of 
squares

Mean Square F

Treatments K-1 SS (Tr)
MS (Tr)                  

= SS(Tr)/ K-1
MS(Tr)
MSE

Blocks n-1 SSB
MSB                        

= SSB/n-1
MSB
MSE

Error (K-1) (n-1) SSE
MSE = SSE

(K-1)(n-1)

Total (N-1) SST
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Example for TWO WAY ANOVA

Patients Low dose Medium dose High dose

Old 71 92 89

Young 44 51 85

Children 50 64 72

Infants 67 81 86

Prof. J.Vijaya Ratna
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ANOVA table for Two way ANOVA

Source of 
variation

Degrees of 
freedom

Sum of 
Squares

Mean Square F

Treatments 3 1.260 420 6.21

Blocks 2 1.256 628 9.28

Error 6 406 67.67

Total 11 2.922
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Two way ANOVA

 F1,16 table value is 4.49 (0.05)
8.53 (0.01)

SSbc, SSbr are significant at 0.01 also
SSrc is significant at 0.05 but not at 0.01

Source SS df MSS F

SSbc

SSbr

SSrc

SSw

561.8

352.8

180

532.4

1

1

1

16

561.8

352.8

180

33.275

561.8 / 33.275 = 16.88

352.8 / 33.275 = 10.60

180 / 33.275 = 5.409

SST 1627 19
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Two way ANOVA

Females sleep longer than males

Drug A has a longer duration of hypnotic action
than drug B.

Drug A causes especially long sleep in females
or especially brief sleep in males.

Drug B causes especially long sleep in males or
especially brief sleep in femals.
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Three way ANOVA

In Three way ANOVA, the total variability in
the data is subdivided into four categories-
rows, columns, treatments, and chance.

Three F ratios are calculated.

Three decisions are taken.

Significance of column effect, row effect and
treatment effect are determined.
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Three way ANOVA

Prof. J.Vijaya Ratna

THREE WAY ANALYSIS OF VARIANCE
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SCHEMATIC OF THREE WAY ANOVA

Source of 
Variation 

Degrees 
of 

freedom

Sum of 
squares

Mean square F

Rows r-1 SSR
MSR = SSR

r-1
MSR
MSE

Columns r-1 SSC
MSC = SSC

r-1
MSC
MSE

Treatments r-1 SS(Tr)
MS(Tr) = SS(Tr)

r-1
MS(Tr)
MSE

Error (r-1) (r-2) SSE
MSE= SSE

(r-1) (r-2)

Total r2-1 SST
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Example for Three way ANOVA

Subject 1 Subject 2 Subject 3 Subject 4

1st Week
A
3

B
2

C
4

D
2

2nd Week
B
2

C
2

D
3

A
4

3rd Week
C
4

D
3

A
3

B
2

4th Week
D
3

A
2

B
2

C
4
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Example for Three way ANOVA

 Tmax values

 H01 : There is no difference between the four weeks

 H02 : There is no difference between the four boys

 H03 : There is no difference between A, B, C and D.
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Example for Three way ANOVA

 Total Sum of Sqaures :

 

4.106.126137
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Example for Three way ANOVA

     
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SCHEMATIC OF THREE WAY ANOVA

Source of 
Variation 

Degrees of 
freedom

SSR MSSR F

Rows r-1=3 0.15 0.05 0.05 / 0.658 = 0.075

Columns r-1=3 1.65 0.55 0.55 / 0.658 = 0.835

Treatment
s

r-1=3 4.65 1.55 1.55 / 0.658 = 2.355

Error (r-1) (r-2) =6 3.95 0.658

Total r2-1=15

Ho1 is accepted
Ho2 is accepted
Ho3 is acceptedProf. J.Vijaya Ratna
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Conclusions

Optimization helps in getting the perfect product
with the help of designs of experiment.

It has many advantages over traditional methods.

Its tools include multiple regression equations,
analysis of variance and several types of plots.
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Thank You
For any queries 

feel free to drop a mail at

vijaya.ratna@gmail.com

mybogroup@gmail.com
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